Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Propylamine-borane

Graeme J. Gainsford* and Mark E. Bowden

Industrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand Correspondence e-mail: g.gainsford@irl.cri.nz

Received 12 May 2009; accepted 18 May 2009
Key indicators: single-crystal X-ray study; $T=93 \mathrm{~K} ;$ mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA ; R$ factor $=$ $0.051 ; w R$ factor $=0.138$; data-to-parameter ratio $=14.8$.

The title compound, $\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{BN}$, was solved using data collected from a multiple crystal (note incomplete data shell). The cell packing is dominated by bifurcated attractive $\mathrm{N}-$ $\mathrm{H}^{\delta+} . .{ }^{\delta-} \mathrm{H}-\mathrm{B}$ interactions.

Related literature

For background to our studies of hydrogen storage materials and the synthesis: see Bowden et al. (2007, 2008). For other $\mathrm{H}_{3} \mathrm{~B}-\mathrm{N}$-containing boranes, see: Alston et al. (1985); Spielmann et al. (2008). For bond lengths and angles in boranes, see: Ting et al. (1972); Klooster et al. (1999); For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental

Crystal data
$\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{BN}$
$M_{r}=72.95$
Monoclinic, $P 2_{\circ} / c$
$a=9.173$ (4) A
$b=8.638$ (3) \AA
$c=7.360$ (3) A
$\beta=97.892(8)^{\circ}$

Data collection

Bruker-Nonius APEXII CCD areadetector diffractometer
$V=577.7(4) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.05 \mathrm{~mm}^{-1}$
$T=93 \mathrm{~K}$
$0.45 \times 0.25 \times 0.03 \mathrm{~mm}$

Absorption correction: none 846 measured reflections

846 independent reflections
$R_{\text {int }}=0.060$
503 reflections with $I>2 \sigma(I)$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051 \quad 57$ parameters
$w R\left(F^{2}\right)=0.138$
$S=1.00$
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.14 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.14 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 8 \cdots \mathrm{H} 11^{\mathrm{i}}$	0.89	2.16	2.96	149
$\mathrm{~N} 1-\mathrm{H} 9 \cdots \mathrm{H} 11^{1 i}$	0.89	2.07	2.93	163

Symmetry codes: (i) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x+1,-y+1,-z+1$.
Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: RLATT (Bruker, 2004) and SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

We thank Dr J. Wikaira of the University of Canterbury, New Zealand, for her assistance with the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2953).

References

Alston, D. R., Stoddart, J. F., Wolstenholme, J. B., Allwood, B. L. \& Williams, D. J. (1985). Tetrahedron, 41, 2923-2926.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bowden, M. E., Brown, I. W. M., Gainsford, G. J. \& Wong, H. (2008). Inorg. Chim. Acta, 361, 2147-2153.
Bowden, M. E., Gainsford, G. J. \& Robinson, W. T. (2007). Aust. J. Chem. 60, 149-153.
Bruker (2004). RLATT in APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Klooster, W. T., Koetzle, T. F., Siegbahn, P. E. M., Richardson, T. B. \& Crabtree, R. H. (1999). J. Am. Chem. Soc. 121, 6337-6343.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Spielmann, J., Jansen, G., Bandmann, H. \& Harder, S. (2008). Angew. Chem. Int. Ed. 47, 6290-6295.
Ting, H.-Y., Watson, W. H. \& Kelly, H. C. (1972). Inorg. Chem. 11, 374-377.

supplementary materials

Acta Cryst. (2009). E65, o1395 [doi:10.1107/S160053680901887X]

Propylamine-borane

G. J. Gainsford and M. E. Bowden

Comment

We have previously reported structures of ammonia borane (Bowden et al., 2007) (FUYVUQ03) and methylamine borane (Bowden et al., 2008) (EFAGEY) as part our studies of hydrogen storage materials. We were challenged to solve the title compound structure by the poorly crystalline platey crystals and to enhance our understanding of the solid state intermolecular interactions. Most other reported $\mathrm{H}_{3} \mathrm{~B}-\mathrm{N}$ containing boranes are present as solvent in clathrates (e.g. DATGAG, Alston et al., 1985); a recent exception is a calcium borylamine complex (VODWUH, Spielmann et al., 2008).

The bond lengths and angles (Fig 1, Table 1) are consistent with those previously reported e.g B-N in solvent ammonia boranes vary from 1.579 to $1.606 \AA$, whilst the other pure boranes (EDABRO, ethylenediamine-bis(borane) (Ting et al., 1972), FUYVUQ03 \& EFAGEY) average 1.592 (12) \AA. The non-hydrogen atom chain is effectively coplanar with r.m.s. deviation $0.0136 \AA$. The refined B-H distance is consistent with previously observed distances of 1.13-1.15 \AA.

The molecules are packed utilizing $\mathrm{N}-\mathrm{H}^{\delta+} \ldots{ }^{\delta-} \mathrm{H} — \mathrm{~B}$ attractive interactions at the N 1 hydrogen H 11 (Table 2, Figure 2). One links inversion symmetry related molecules (entry 2) resulting in the equivalent of a $R^{2}{ }_{2}(8)$ graphset moiety (Bernstein et al., 1995). The other links screw axis related molecules (entry 1). The $\mathrm{H} \cdots \mathrm{H}$ distances are similar to those found in EDABRO (2.04, 2.12 \AA) and by neutron diffraction for ammonia borane (2.02 (3), 2.21 (4), 2.23 (4); Klooster et al., 1999).

Experimental

Synthesis was carried out using a procedure analogous to that for methylamine borane (Bowden et al., 2008). An equimolar mixture of propylamine hydrochloride (dried at $110^{\circ} \mathrm{C}$) and sodium borohydride were stirred in anhydrous tetrahydrofuran in a reaction flask at room temperature. Evolution of hydrogen gas was observed immediately, and overnight 1 mol of hydrogen was collected. The resulting suspension was filtered to remove sodium chloride, and tetrahydrofuran removed by rotary evaporation. A near quantitative yield of propylamine borane crystals remained.

Refinement

Diffraction data was extracted from the major of multiple intersecting lattices using RLATT (Bruker, 2004). The structure was solved by direct methods but refinement halted at R1 0.18 for the 684 unique data with $\mathrm{I}>2 \sigma(\mathrm{I})$. Inspection of data showed a large number with $\mathrm{F}_{\mathrm{o}} \gg \mathrm{F}_{\mathrm{c}}$ indicating coincidental contributions from the other contributing lattice(s). A total of 172 reflections which met the two criteria [with $\mathrm{q}=1.3$], (1) $\mathrm{I}(\mathrm{obs}) / \mathrm{I}(\mathrm{calc})>\mathrm{q}$ and $(2)(\mathrm{I}(\mathrm{obs})-\mathrm{I}($ calc $))>\mathrm{q} \sigma(\mathrm{I}(\mathrm{obs}))$, were then excluded from the dataset. The conventional R1 for these rejected data was 0.44 . The ratio criteria q was varied down to values of 0.9 : although the R1 agreement factors converged at around a ratio of 1.0 (R1 0.051 , for $491 \mathrm{I}>2 \sigma(\mathrm{I})$ data) no significant changes occurred in final su values or parameters compared with the slightly larger dataset. On the basis that another analysis of the data would be possible if the larger dataset was presented, the refinement was continued with the

supplementary materials

(ratio 1.3) 512 independent remaining reflections (R1 0.0544). Nine further weak intensity reflections at high theta, outliers with $\mathrm{I}(\mathrm{obs}) \gg \mathrm{I}($ calc $)$, were then omitted lowering R1 to 0.0508 for the final dataset ($503 \mathrm{I}>2 \sigma(\mathrm{I})$).

The $X-\mathrm{H}$ bond distances (where $X=\mathrm{C} 1, \mathrm{C} 2, \mathrm{~B} 1 \& \mathrm{~N} 1$) were refined. All methyl and other H atoms were refined as riding on their parent atom with $U_{\text {iso }} 1.5 \& 1.2$ times respectively that of the $U_{\text {eq }}$ of their parent atom.

Figures

Fig. 1. Molecular structure of the asymmetic unit (Farrugia, 1997); displacement ellipsoids are shown at the 30% probability level.
Fig. 2. Cell contents view (Mercury; Macrae et al., 2006). For clarity only a limited set of atoms are labelled. Hydrogen bonds are shown as rippled lines (purple) with carbon, nitrogen \& boron atoms gray, blue \& pink respectively. Symmetry codes: (i) $1-x, 1 / 2+y, 1 / 2-z$ (ii) 1 $-x, 1-y, 1-z$ (see Table 2).

Propylamine-borane

Crystal data

$\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{BN}$
$M_{r}=72.95$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=9.173$ (4) \AA
$b=8.638$ (3) \AA
$c=7.360(3) \AA$
$\beta=97.892$ (8$)^{\circ}$
$V=577.7$ (4) \AA^{3}
$Z=4$
$F_{000}=168$
$D_{\mathrm{x}}=0.839 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 1112 reflections
$\theta=3.3-26.4^{\circ}$
$\mu=0.05 \mathrm{~mm}^{-1}$
$T=93 \mathrm{~K}$
Plate, colourless
$0.45 \times 0.25 \times 0.03 \mathrm{~mm}$

Data collection

Bruker-Nonius APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
Detector resolution: 8.192 pixels mm^{-1}
$T=93 \mathrm{~K}$
φ and ω scans
Absorption correction: none
846 measured reflections

846 independent reflections
503 reflections with $I>2 \sigma(I)$
$R_{\mathrm{int}}=0.060$
$\theta_{\text {max }}=25.1^{\circ}$
$\theta_{\text {min }}=3.7^{\circ}$
$h=-10 \rightarrow 10$
$k=0 \rightarrow 10$
$l=0 \rightarrow 8$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.138$
$S=1.00$
846 reflections
57 parameters
Primary atom site location: structure-invariant direct methods

H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0567 P)^{2}+0.1469 P\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.14 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.14 \mathrm{e} \AA^{-3}$
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
N1	$0.57394(18)$	$0.52001(19)$	$0.2744(2)$	$0.0238(5)$
H8	0.5692	0.5971	0.1940	0.029^{*}
H9	0.5954	0.5610	0.386	0.029^{*}
C1	$0.6964(2)$	$0.4155(2)$	$0.2415(3)$	$0.0257(6)$
H6	0.6737	0.3705	0.1238	0.031^{*}
H7	0.7038	0.3345	0.3288	0.031^{*}
C2	$0.8429(2)$	$0.4958(3)$	$0.2528(3)$	$0.0322(7)$
H4	0.8675	0.5373	0.370	0.039^{*}
H5	0.8353	0.5779	0.1690	0.039^{*}
C3	$0.9647(3)$	$0.3874(3)$	$0.2123(4)$	$0.0451(8)$
H1	0.9727	0.3009	0.2992	0.068^{*}
H2	1.0582	0.4439	0.2245	0.068^{*}
H3	0.9418	0.3475	0.0870	0.068^{*}
B1	$0.4156(3)$	$0.4415(3)$	$0.2603(3)$	$0.0270(6)$
H10	0.3330	0.5297	0.2937	$0.038(4)^{*}$
H11	0.4196	0.3425	0.3603	$0.038(4)^{*}$
H12	0.3825	0.3969	0.1169	$0.038(4)^{*}$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N 1	$0.0366(11)$	$0.0151(9)$	$0.0210(10)$	$-0.0006(7)$	$0.0080(8)$	$-0.0003(7)$
C 1	$0.0373(13)$	$0.0181(11)$	$0.0223(12)$	$0.0025(9)$	$0.0066(9)$	$0.0006(8)$

C2	$0.0389(15)$	$0.0311(13)$	$0.0268(13)$	$0.0016(11)$	$0.0053(10)$	$0.0013(10)$
C3	$0.0395(16)$	$0.0542(17)$	$0.0432(16)$	$0.0078(13)$	$0.0109(12)$	$0.0059(12)$
B1	$0.0372(15)$	$0.0226(13)$	$0.0216(13)$	$-0.0017(11)$	$0.0056(10)$	$-0.0002(9)$

Geometric parameters (\AA, ${ }^{\circ}$)

N1-C1	1.487 (3)	C2-H4	0.9359
N1-B1	1.593 (3)	C2-H5	0.9359
N1-H8	0.8880	C3-H1	0.9800
N1-H9	0.8880	$\mathrm{C} 3-\mathrm{H} 2$	0.9800
C1-C2	1.504 (3)	C3-H3	0.9800
C1-H6	0.9465	B1-H10	1.1255
C1-H7	0.9465	B1-H11	1.1255
C2-C3	1.518 (3)	B1-H12	1.1255
C1-N1-B1	115.68 (17)	C1-C2-H5	109.1
C1-N1-H8	108.4	C3-C2-H5	109.1
B1-N1-H8	108.4	H4-C2-H5	107.9
C1-N1-H9	108.4	C2-C3-H1	109.5
B1-N1-H9	108.4	C2-C3-H2	109.5
H8-N1-H9	107.4	$\mathrm{H} 1-\mathrm{C} 3-\mathrm{H} 2$	109.5
N1-C1-C2	113.60 (17)	C2-C3-H3	109.5
N1-C1-H6	108.8	H1-C3-H3	109.5
C2-C1-H6	108.8	$\mathrm{H} 2-\mathrm{C} 3-\mathrm{H} 3$	109.5
N1-C1-H7	108.8	N1-B1-H10	109.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 7$	108.8	N1-B1-H11	109.5
H6- $\mathrm{C} 1-\mathrm{H} 7$	107.7	H10-B1-H11	109.5
C1-C2-C3	112.4 (2)	$\mathrm{N} 1-\mathrm{B} 1-\mathrm{H} 12$	109.5
C1-C2-H4	109.1	$\mathrm{H} 10-\mathrm{B} 1-\mathrm{H} 12$	109.5
C3-C2-H4	109.1	H11-B1-H12	109.5

Hydrogen-bond geometry ($\AA,^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 8 \cdots \mathrm{H} 11^{\mathrm{i}}$	0.89	2.16	2.96	149
$\mathrm{~N} 1 — \mathrm{H} 9 \cdots \mathrm{H} 11^{\text {ii }}$	0.89	2.07	2.93	163
Symmetry codes: (i) $-x+1, y+1 / 2,-z+1 / 2 ;($ ii) $-x+1,-y+1,-z+1$.				

Fig. 1

supplementary materials

Fig. 2

